MANAGING RISK IN WHOLESALE PAYMENTS: OPERATIONAL, LIQUIDITY AND FRAUD

Mitigate risk with ACI Money Transfer System™ and ACI Proactive Risk Manager™
Risk is a central ingredient of the business of banking. In the process of providing financial services, banks assume various kinds of risk, which need to be identified, managed, controlled and, where appropriate, mitigated by a combination of pricing and product design.

The globalization of financial services, and the increasing sophistication of financial technology, mean that the risks of today are more complex and far-reaching; and the recent market turmoil, and the apparent fragility of some banking entities, have highlighted in a dramatic way the critical nature of some banking risks.

Payments, being at the very heart of a commercial bank’s activities, are certainly not immune to these forces. There is a growing realization that the risks associated with payments processing do have the potential to become substantial, yet banks can take advantage of the sophisticated tools now available to help them manage these risks in a proactive manner.

OPERATIONAL RISK
Operational risk has many definitions, but at the core of it is the risk of loss resulting from the inadequacy or failure of internal processes, people and systems.

In the payments world, the substance of this is exacerbated by the deployment of more highly automated technology in globally integrated systems, which has the potential to replace the risks of manual processing errors with the risk of system failure.

In addition, the fact that certain banks are now setting themselves up as large-volume service providers in payments, perhaps through mergers or by acquisition, means that internal controls and the resilience of systems must be of the highest order.

Operational resilience is a “sine qua non” for payment banks, and this begins with robust funds transfer processing software, and high-availability hardware and software. This resilience is now a regulatory expectation, not just a prudent business decision, and should lead to an increase in day-to-day processing efficiencies.

For example, the Basel II Capital Accord requires banks to focus in a formalized, comprehensive manner on the operational risks that can result from external influences.

Any investment in improved contingency procedures and approaches should be reflected in a reduction in the need for operational risk capital, and this should provide banks with the incentive to invest in new systems and practices to reduce the potential for serious losses from operational risk.

In terms of payments, the potential loss events to be guarded against include:

- Unauthorized activity (transactions unauthorized or not reported)
- Losses arising from an unintentional or negligent failure to meet a professional obligation to specific clients
- Product flaws and defects
- Exceeding client exposure limits
- Losses arising from disruption of business or system failures
- Losses from failed transaction processing or process
management (data entry errors, missed deadlines, system misoperation, accounting errors, delivery failures, reference data maintenance)

- Failed mandatory reporting obligation
- Outsourcing and vendor disputes
- Internal or external fraud
- Improper business practices (money laundering)

MORE THAN EVER, PAYMENT PROCESSING FUNCTIONS, CAPACITY AND CONNECTIVITY ISSUES ARE UNDER THE SPOTLIGHT.

None of this, of course, is new. But now, the mitigation of operational risk will be influenced to a very large extent by the effectiveness or otherwise of internal systems and control over the use of technology. More than ever, payment processing functions, capacity and connectivity issues are under the spotlight.

THE ACI RESPONSE TO OPERATIONAL RISK

ACI Money Transfer System™ complements a financial institution’s risk protection strategy by providing a systems solution which encompasses and addresses business critical areas of operation. The key focus areas of the Money Transfer System solution relevant to operational risk are:

Business continuity: Providing a solution that is able to recover quickly from the complete loss of a primary operations site

Business management: Providing a solution where financial transaction activity is managed within institution-defined credit limits, liquidity thresholds, processing rules and security procedures

Ongoing compliance: Providing a solution that incorporates all regulatory requirements applicable to the markets in which the institution operates, for example conformity with OFAC rules

Operational resilience: Providing a robust and scalable architectural solution, ensuring the maximum throughput of transactions

Money Transfer System provides various monitoring capabilities to enable institutions to manage operational risk. Screens are designed for maximum user efficiency while guarding against operator errors with field edits and verifications. User profiles and privileges allow a breadth of segregation by function or task without hindering workflow. All of the options for processing and workflow are highly configurable to place control with the financial institution.

Money Transfer System employs multiple mechanisms to ensure availability and reliability. The software is designed to minimize points of failure and costly downtime. Alarms alert operators to system problems, and the state-of-the-art Remote Hot Standby™ (RHS) module provides a redundant business recovery system. Central to a disaster recovery strategy is the ability to continue processing on a back-up site following loss of a primary site, with minimum interruption and no loss of data. RHS is a unique and proven business continuity solution that ensures complete data protection, and a fast recovery time.

SWIFT, the member-owned cooperative that provides the communications platform to connect over 8,500 banking organizations, securities institutions and corporate customers in more than 200 countries, achieves system availability of 99.999%. Money Transfer System banks are able to match that level of resiliency.

The review of messages by interdiction rules is commonplace at financial institutions in managing operational risk. Money Transfer System provides two functions, STOP and monitor, to evaluate messages and prevent further processing. The STOP filter is an additional optional component of Money Transfer System employed to immediately block payments and prevent them from leaving the financial institution. The STOP database accepts lists (for example from government and regulatory agencies) as well as manually maintained STOP tokens and phases, and Money Transfer System can readily interface with other external tools for a broader enterprise solution.
LIQUIDITY RISK
Although managing liquidity has always been one of the most important services offered by banks, it has become a key concern as evidenced by the recent liquidity shortage associated with the banking crisis. The ability to provide liquidity to customers is a crucial activity, on which many bank activities depend either directly or indirectly. Until the global financial crisis, many banks considered their liquidity management to be fairly efficient. But the crisis has thrust liquidity management back into the limelight, particularly in the context of changing regulatory requirements.

Moreover, banks’ corporate customers have also been impacted by the global slowdown and are looking to their banking partners to enable better, more up-to-date information for tracking payments as well as reporting for intra-day liquidity management. For example, corporate customers need to be able to specify which high-value payments must be made immediately and which can be delayed, what their positions are and how any excess cash should be invested. As such, these demands for increased functionality are now adding extra pressure on banks on top of basic regulatory compliance.

DEFINING LIQUIDITY
Essentially, liquidity refers to “the ability of a bank to fund increases in assets and to meet obligations as they become due, without incurring unacceptable losses”. At the most basic level, this involves the bank ensuring that it has a wide range of deposits which can protect against liquidity shortfalls.

The management of liquidity has evolved over the years as the complexity of financial activities has grown. Banks and their regulators have increasingly recognized the link between sound liquidity management and the reduced probability of banking failures.

As a result of these tighter risk management requirements, the Basel Committee on Banking Supervision Report of September 2008 specified 17 clear liquidity principles that it expects banks to implement “promptly and thoroughly”. The principles can be broadly divided into governance of liquidity risk management, measurement and management of liquidity risk, public disclosure and the role of Supervisors.

Banks now need to manage liquidity on an intra-day basis, as opposed to a daily basis, as failure to complete time-critical payments could have major repercussions across markets.

INTRA-DAY LIQUIDITY MANAGEMENT AND MULTIPLE LIQUIDITY POSITIONS
A growing number of emerging payment systems are affecting liquidity in ways not experienced in the past. The introduction of initiatives such as Continuous Linked Settlement (CLS), U.S. CHIPS finality and U.K. Faster Payments drastically changed the landscape. For example, until the launch of the U.K. Faster Payments scheme, banks conducted their settlement overnight. However, now the real-time payments mechanism for person-to-person transactions means that those banks offering the service must conduct settlement up to three times a day, which has a further effect on liquidity.

Banks are increasingly operating across borders and in multiple locations, which has an impact on their liquidity management processes. Many banks now need to manage multiple liquidity positions across different currencies. In addition, while the introduction of the Euro means that European banks can manage liquidity in a single currency, this further adds to the complexity as new clearing systems are implemented, but the consolidation and retirement of old systems are slow to progress.

In this environment, banks must now consider several major issues, such as how to manage liquidity within each system in the most cost-efficient way, how to transfer liquidity from one system to another, and how to choose the best trade-off between liquidity and transaction costs among the various payment systems.

In order to manage liquidity effectively, a crucial component must be good management information. Banks need a global view of liquidity positions across all of the currencies that they process and the major clearings in which they participate at both the bank and customer level. Moreover, this information must be provided in real time, as they need to be able to track payments and risk exposure on a minute-by-minute basis. In addition, banks need to manage liquidity to an intra-day, real-time position, while still forecasting end-of-day and collateral positions. Finally, banks need to control the release of payments based on actual and projected balances, ensuring that liquidity is optimized in order to control costs.
MANY BANKS ARE BEGINNING TO REALIZE THAT MANAGING THE FLOW OF MONEY IN AND OUT OF THE BANK IN A GLOBAL ENVIRONMENT CAN BE A SIGNIFICANT COMPETITIVE ADVANTAGE.

Liquidity management has also begun to impact new parts of the bank. For example, the interaction between clearing and settlement mechanisms has become more prevalent, and the distinction between Real Time Gross Settlement (RTGS) and automated clearing house (ACH) is becoming less obvious. Many of the liquidity concerns which had previously been restricted to the realm of RTGS are now beginning to be felt in ACH and “retail” clearing and settlement systems. Therefore, liquidity management is now required across a greater range of payment processes.

Owing to its far reaching consequences, liquidity management has become critically important both internally and externally to the banks. Banks must be aware therefore that their own liquidity management is no longer an issue just for them and their customers, but also an issue for the greater world community. The effect of poor liquidity management in one financial institution can spread all too rapidly in the global banking community, as has been highlighted by the recent global financial crisis. This is where improved regulation could help to prevent similar events in the future.

While regulatory pressures and market developments are ensuring that liquidity management is of increasing importance, many banks are beginning to realize that managing the flow of money in and out of the bank in a global environment can be a significant competitive differentiator. Banks that offer additional services to their corporate customers that enhance liquidity management will have a significant competitive advantage as this continues to take priority. In addition to ensuring that banks are prepared for future regulatory compliance, this should contribute significantly to safeguarding their future.

THE ACI RESPONSE TO LIQUIDITY RISK

Within Money Transfer System, extensive tools are provided that enable the bank to maximize its utilization of available liquidity with minimal manual input. The extensive configuration options allow the bank to move toward a highly automated process of liquidity allocation that will manage most of the day-to-day routine payments traffic. Such typical payment flows can be captured within the solution, and the information can be made available to an external reporting or other bank system, when analytics can assist in identifying any patterns or other characteristics.

Many banks are beginning to realize that managing the flow of money in and out of the bank in a global environment can be a significant competitive advantage.

In addition, to assist the bank to meet the demands of its customers for more payments information for their own liquidity management purposes, “Payment Tracker” within Money Transfer System leverages the power of a single unified payments data store, one that provides users with a single view of all payments — allowing the bank to leverage payment data it already has and deploy that to a much wider audience.

Money Transfer System, with its intra-day multi-currency position-tracking functionality, can be used as a transactional repository for intra-day liquidity. With this approach, it serves as a liquidity transaction engine, accumulating all transactions and expected transactions that affect liquidity from a variety of back-office applications at the bank.

The projected and actual liquidity can be illustrated on a time-generated time line in real time, allowing the user to clearly see the indicated pattern of liquidity flows, and projected liquidity based on the time parameter using actual and anticipated transactions.

Finally, all liquidity positions, either on an individual currency basis or on a consolidated aggregate basis, can be expressed in terms of a chosen single base currency, using a defined book or exchange rate.

Optimization of liquidity is challenging even in an easily predictable environment. Capital costs preclude holding excessive liquidity, while unpredictable events and business drivers produce asymmetric flows. The key to maintaining a balance between the diminishing returns of excessive liquidity and service failure because of uncovered short excesses is to utilize the real-time reporting and forecasting features of Money Transfer System so that intra-day positions can be monitored and positions forecast.
MANAGING RISK IN WHOLESALE PAYMENTS: FRAUD

FRAUD RISK

Financial institutions face ever-increasing challenges around fraud. Phishing, skimming, hacking — criminals continually dream up new fraud schemes with the intention of staying one step ahead of those trying to combat such tactics. The burden on financial institutions is to protect their customers from fraud, protect themselves from fraud losses and comply with mounting national and international regulations and mandates.

On top of this, as countries speed along the path towards immediate payments, the historical model of crossing that bridge when we get to it is no longer a viable option when managing the threats of fraud and money laundering. Global rollouts of any new payments scheme have proven that any vulnerability for financial exploitation will realize some form of abuse until tighter controls for authentication and prevention solutions are put in place. So naturally, as fraud finds its way by the path of least resistance, immediate payments present an attractive new pathway to abuse. The residual for any payments provider who seeks to offer these real-time services is that financial losses and compliance issues are inevitable, especially when transaction times shorten to as little as three seconds. To mitigate fraud in such a short time window requires investment in new processes, technology and training staff, and educating customers.

From a customer perspective, the ability to send and access funds in this way provides significant benefits in terms of convenience and financial management. Unfortunately, the rapid availability of funds makes online banking systems an attractive target for criminals — especially since other initiatives, such as chip and PIN, have limited the ability to make fraudulent card transactions.

Although traditionally one of the more secure environments within a financial institution’s operations, wire transfers pose perhaps the single greatest risk of loss to a financial institution. The speed with which losses can occur, the potential size of such losses and the lack of ability to recover funds once they are transferred to the destination institution all leave financial institutions vulnerable to criminal attack.

To fully understand the risk that exists in wire transfers, it is important to analyze the origin of the wire. Many financial institutions enable customers (businesses and consumers) to initiate wire transfers in branch, over the phone or online. Each of these methods contains risk, although some more than others.

In general, wire transfers originating from branch locations are the least risky of all, as fraudsters are generally reluctant to put in a personal appearance. Despite this, it is important that branches have a documented authentication process, including requirements for multiple forms of ID or signature verification.

Financial institutions usually require individuals initiating a wire transfer request over the telephone — typically corporate customers — to be authorized to initiate wires on behalf of the company for the particular accounts. These individuals must be able to provide appropriate security codes or correctly answer previously established security questions. Yet, internal employees, both within the bank and the corporate, may gain access to account information and passwords to overcome such security barriers.

Similarly, financial institutions that enable customers to initiate wire transfers online open themselves to risk by fraudsters who are able to circumvent online authentication measures, whether by deploying a Trojan or some other type of computer malware to steal login and password information, or by performing man-in-the-middle or man-in-the-browser attacks.

Multifactor authentication — such as tokens, one-time passwords, keystroke identification, IP profiling, etc. — reduces the risk of online banking wire fraud. However, deploying multifactor authentication on a wide scale is costly, and criminals continue to develop techniques to circumvent strong user authentication.

The layering of this environment should include dynamic authentication, navigation and device analysis systems, as well as the capacity to integrate these various data feeds with real-time rules in the enterprise fraud detection solution. These controls will need to be dynamic, beginning at the point of entry, with risk-weighted controls at various parts of the user’s interaction with the channel gateway as the customer’s session runs its course. A robust fraud prevention strategy should also have the capacity planning that allows for an agile integration of any additional third-party tools to monitor any point in a user’s session, should a gap be later recognized. Furthermore, it is
REDUCING FRAUD RISK FROM WIRE TRANSFERS

There are a number of measures that a financial institution may take in their efforts to reduce the risk of fraud.

- Screen for wire activity that is not typical for the specific customer and that breaches a customer’s historical averages (amounts, frequency, etc.)
- Screen for wire activity on new accounts following large deposits
- Screen for wire activity on accounts that have previously been dormant
- Screen for wires sent to bank secrecy haven countries
- Screen for wires sent after critical account settings are changed, such as changes to passwords, changes to call-back telephone numbers or adding “authorized” wire initiators, etc.

There are a number of measures that a financial institution may take in their efforts to reduce the risk of fraud.

- Screen for wire activity that is not typical for the specific customer and that breaches a customer’s historical averages (amounts, frequency, etc.)
- Screen for wire activity on new accounts following large deposits
- Screen for wire activity on accounts that have previously been dormant
- Screen for wires sent to bank secrecy haven countries
- Screen for wires sent after critical account settings are changed, such as changes to passwords, changes to call-back telephone numbers or adding “authorized” wire initiators, etc.

3. **Session navigation** — Identify path of the session and whether it represents a customer’s usual access. Were the session transactions, click stream and online interactions of the user aligned with what would be typical of how this customer interacts with the site or gateway?

4. **Behavioral profile** — Verify the profile of the customer is aligned with the monetary transaction(s) that were attempted. Assess for anomalous elements or parameters relative to how the customer typically transacts.

5. **Review of cross-channel or multi-channel activity** — Review account activity in relation to the most recent activity, to identify additional elements that may be related to this activity both inside the account and between seemingly unrelated accounts. Non-monetary transactions and/or a review of the demographic elements associated with the transactions which can be a risk indicator.

6. **Real-time and/or transaction alerting rules** — Integrate transaction controls of the above elements into a holistic solution. At the point of initiating a monetary transaction, the comprehensive intelligence of the session is gathered and logic is applied to make the approval, decline or hold decision. Although the focus is on “immediate” payments, many implementations have service levels (SLAs) that allow for a small percentage of transactions to be held before release. For example, the Australian implementation of immediate payments (New Payments Platform) will have an SLA of 95% of transactions responded to within 15 seconds. Transactions that are deemed high-risk, but not high enough to decline, can be held, reviewed, then released/declined. In many cases, an approval can be given and any low-risk suspicious activity flagged for follow-up by an analyst.

Utilizing a suite of analytical options, such as behavioral profiling, enterprise data points (including cross-channel and non-monetary transactions) and the capacity for the agile integration of multiple and disparate sources of rich data elements, will provide sufficient data points for developing fraud detection strategies. These strategies will allow for the application of rules that are specific and precise enough to create a volume of alerts that are both high-quality and low-quantity and therefore manageable in a high-volume, high-velocity environment. Lastly, capacity for not only alerting, but also a real-time decline or hold capability for any immediate payment, is a must for any solution.
ACI PROACTIVE RISK MANAGER™ AND WHOLESALE PAYMENTS

In ACI’s experience, reductions in false positives by over 40% can be achieved by upgrading fraud management tools over prior systems, while simultaneously tripling detection performance on a transaction basis. The long-term success of a fraud detection solution typically requires one element to retain confidence and relevance during a fraud event — agility. Agile solutions can be rapidly configured to meet a new threat head on, without significant resource investment or technical support. This is critically important when considering a new payment type that is irrevocable such as an immediate payment. Fraud events act like business disruptors when an unexpected significant event in both size and scope and without immediate visibility to causative factors occurs. Having an open solution and flexible configuration is key to the successful remediation of the risk. An extendable fraud detection solution should provide its users with the flexibility and independence to fully utilize the tools, where necessary under appropriate oversight, and not block access to a critical element in a time of need. This key characteristic of an effective fraud detection solution also allows the tools to easily digest actionable intelligence and new, reconfigured or third-party data elements without significant technical support. Empowering business users through tools that feature extendable and agile architecture can transform a high-risk fraud event into a residual loss avoidance situation, instilling confidence in the team’s ability to mitigate the risk of a fraud event via a creative and persistent approach.

ACI Worldwide, the Universal Payments (UP) company, powers electronic payments for more than 5,100 organizations around the world. More than 1,000 of the largest financial institutions and intermediaries, as well as thousands of global merchants, rely on ACI to execute $14 trillion each day in payments and securities. In addition, myriad organizations utilize our electronic bill presentment and payment services. Through our comprehensive suite of software solutions delivered on customers’ premises or through ACI’s private cloud, we provide real-time, immediate payments capabilities and enable the industry’s most complete omni-channel payments experience.